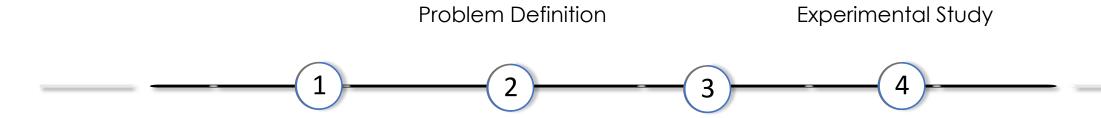
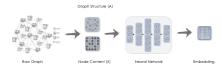


Universal Graph Embedding for Heterogeneous Study-trajectory Graph



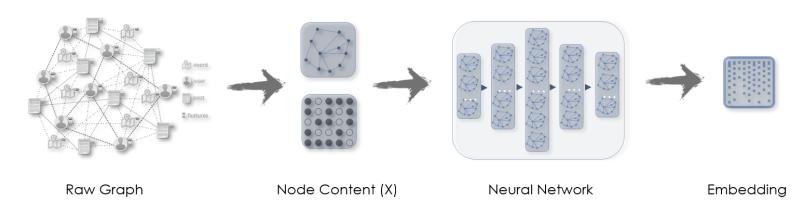
Introduction

Universal Graph Embedding



Introduction

Graph Structure (A)

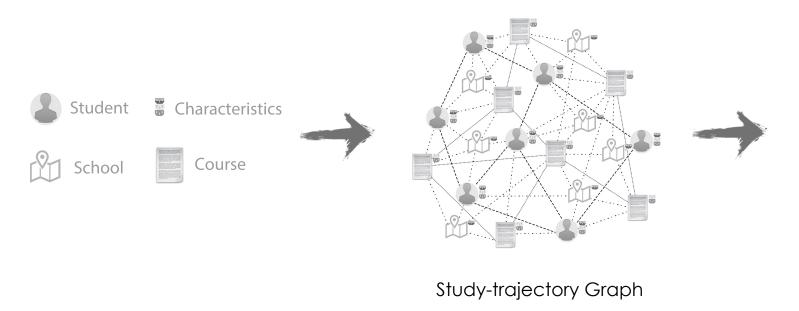


Graph Data

are ubiquitous in many areas: Biology, Social media and academic engine;

Graph Embedding

embeds homogeneous nodes with lowdimensional and unified vectors, while preserving the contextual information between nodes



Problem Definition

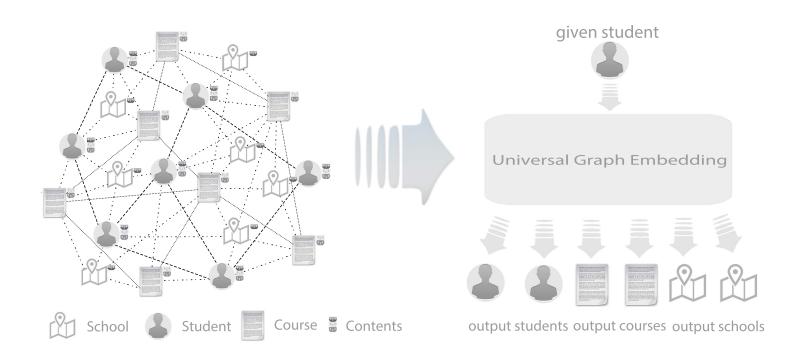
Given a graph \mathbf{G} , our purpose is to map the **nodes** $v_i \in \mathbf{V}$ to vectors $v_i \in \mathbb{R}^d$ with the formal format as follows: $\mathbf{f}: (A;X) \mapsto \mathbf{Z}$, z_i^T is the i_{th} row of the matrix $\mathbf{Z} \in \mathbb{R}^{d \times n}$. Is the number of nodes d is the dimension of embedding. \mathbf{Z} is the **embedding** matrix

Graph: $G = \{V, E, X\}$, where $V = \{v_i\}_{i=1,\dots,n}$ consists of a set of nodes in a graph;

Edge: $e_{i,j} = \langle v_i, v_j \rangle \in E$;

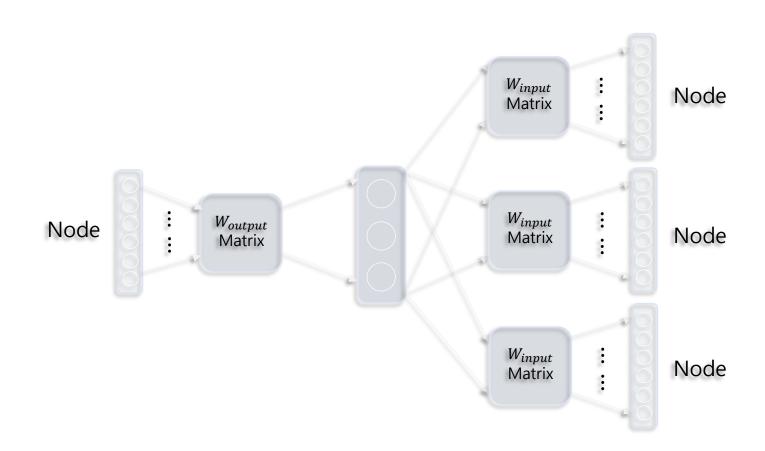
A: is an adjacency matrix to present graph G where $A_{i,j} = 1$ if $e_{i,j} \in E$, otherwise $A_{i,j} = 0$. **X**: $x_i \in X$ indicates the content information associated with each node v_i

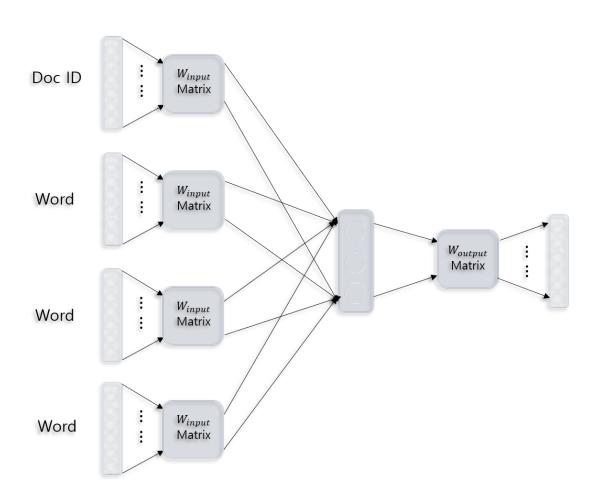
Universal Graph Embedding (UGE)



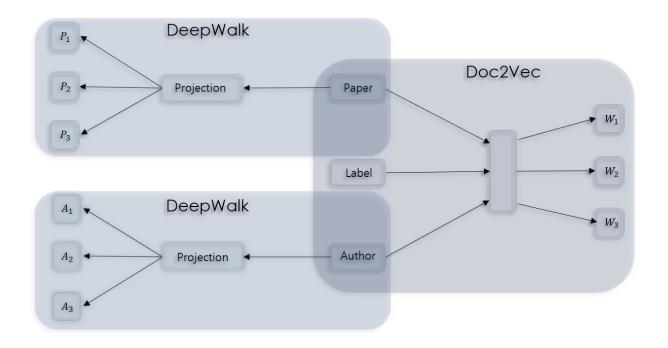
Existing algorithms are commonly designed for homogeneous information networks where all nodes of a network are of the same type.

To our best knowledge, there is no effective graph embedding algorithms have been leveraged in the graph domain.





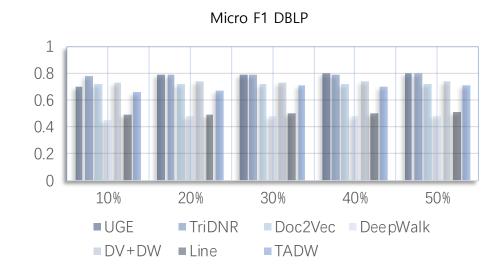
Universal Graph Embedding Framework



UGE Experiments

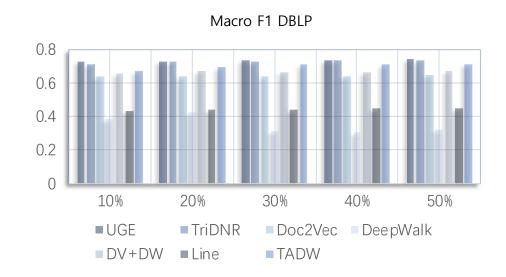
Computer science bibliography dataset

Data set	#paper nodes	#author nodes	#paper edges	#author edges	#content words	#labels
DBLP	56,503	58,279	106,752	142,581	3,262,885	4
CiteSeerX-Avs	18,720	40,139	54,601	41,458	2,649,720	5
CiteSeerX-M10	10,310	21,289	77,218	21,966	1,516,893	10



Micro F1 DBLP

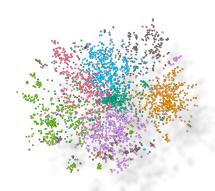
Training size	UGE	TriDNR	Doc2Vec (DV)	DeepWalk (DW)	DV+DW	Line	TADW
10%	0.701	0.777	0.717	0.455	0.728	0.488	0.662
20%	0.792	0.787	0.722	0.478	0.737	0.494	0.67
30%	0.795	0.788	0.722	0.479	0.736	0.498	0.711
40%	0.797	0.793	0.722	0.48	0.739	0.499	0.705
50%	0.798	0.798	0.724	0.482	0.74	0.511	0.716



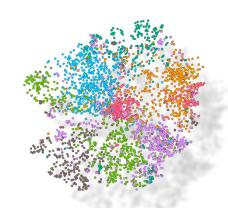
Macro F1 DBLP

Training size	UGE	TriDNR	Doc2Vec (DV)	DeepWalk (DW)	DV+DW	Line	TADW
10%	0.732	0.715	0.638	0.385	0.659	0.431	0.67
20%	0.732	0.727	0.644	0.43	0.669	0.439	0.698
30%	0.736	0.73	0.643	0.317	0.668	0.445	0.709
40%	0.739	0.736	0.643	0.308	0.668	0.446	0.711
50%	0.742	0.738	0.65	0.32	0.675	0.446	0.712

UGE Dataset: Avs



DeepWalk
Dataset: Avs



TADW Dataset: Avs

Cases Study

OUTPUTS FROM REPRESENTATIONS. THE MATCHED IS MARKED WITH \odot

Input: Learning in Neural Networks

UGE:

- 1. Adjoint-Functions and Temporal Learning Algorithms in Neural Networks ⊙
- 2. Bit-Serial Neural Networks \odot
- 3. An Information-theoretic Learning Algorithm for Neural Network Classification \odot
- 4. Polynomial Time Algorithms for Learning Neural Nets \odot
- 5. Training of Large-Scale Feed-Forward Neural Networks \odot

Doc2Vec:

- 1. Non-Cumulative Learning in METAXA.3
- 2. Learning Filaments
- 3. Learning of Kernel Functions in Support Vector Machines
- 4. Incremental Learning in SwiftFile
- 5. Learning While Searching in Constraint-Satisfaction-Problems

DeepWalk:

- 1. Estimating image motion from smear: a sensor system and extensions 2. Inferring 3D Volumetric Shape of Both Moving Objects and Static Background Observed by a Moving Camera
- 3. Secure face biometric verification in the randomized Radon space
- 4. An Ensemble Prior of Image Structure for Cross-Modal Inference
- 5. Closed Non-derivable Item sets

